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Abstract. We investigate the growth of viscous fingers ( V F )  and diffusion-limited aggregates 
(DLA)  in a disordered porous medium. We propose that the DLA model and V F  are not 
equivalent in a porous medium with topological disorder as represented by a percolation 
system and suggest new universality classes for VF and DLA in such media. We also present 
evidence that, for a wide class of porous media with geometrical disorder (i.e. with pores 
of random sizes), the DLA model and V F  are nor equivalent, even though they have often 
been characterised by approximately the same fractal dimension. Moreover, V F  appear to 
be sensitive to the local properties of the medium such as the pore size distribution. 
Therefore, the DLA model cannot be used to simulate VF in disordered porous media and 
to predict the efficiency of the displacement process. 

The displacement of a viscous fluid by a less viscous fluid is often unstable (for a 
review see Lenormand (1986) and references therein). The instability is manifested 
by the formation of a multitude of fingers of the displacing fluid (DF), which grow at 
relatively large speed, leaving behind a large amount of the displaced fluid. The 
traditional approach for describing such fingers is to use continuum flow equations, 
based on Darcy’s law for creeping flow. Darcy’s law states that in a porous medium 
the fluid flux U is proportional to the gradient of the pressure P :  

k 
II. 

U =  - - V P  

where p is the viscosity of the fluid and k is the permeability of the medium. For 
incompressible fluids V . U = 0 and therefore 

v ( k V P ) = O .  (2) 
For a uniform system k is a constant and, therefore, the pressure P satisfies the Laplace 
equation. If the viscosity of DF is much smaller than that of the displaced one, then 
the pressure everywhere in the DF is constant and the pressure in the displaced fluid 
satisfies (2), with the boundary condition that P is also a constant far from the interface. 
In the absence of any interfacial tension between the two fluids, the interface would 
move with the velocity U/Cp, where Cp is the porosity of the medium. 

Paterson (1984) pointed out the analogy between the problem of displacement of 
viscous fluids and the diffusion-limited aggregation ( DLA) model of Witten and Sander 
(1981). In this model particles are added to a growing aggregate using random walk 
trajectories. This analogy between DLA and viscous fingers (VF)  is appropriate when 
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the medium is uniform and the mobility ratio M,  i.e. the ratio of the viscosities of the 
displaced and displacing fluids, is infinite. While there have been several recent studies 
of VF, when M is finite, and their relation with the DLA model (King and Scher 1985, 
DeGregoria 1985, Sherwood and Nittmann 1986, Siddiqui and Sahimi 1986), there has 
not been any attempt to study the relation between V F  and the DLA model when the 
medium is disordered. 

If an inviscid fluid displaces a viscous fluid in a porous medium, the interface is 
unstable even to small fluctuations. The source of the fluctuations is the microstructure 
of the medium and, therefore, if the DLA or a related model is to be used for simulating 
such displacement processes and obtaining quantitative predictions about the efficiency 
of the process, one has to develop an understanding of the relation between the DLA 

model and the problem of VF in a porous medium. The experiments of Chen and 
Wilkinson (1985) clearly demonstrate the effect of microstructure of the medium on 
the displacement process. As the microstructure of the medium changes from an 
ordered to a highly disordered one, the nature of the displacement changes from 
ordered (dendritic) patterns to highly unstable with fractal VF. The aim of this letter 
is to explore the relation between the DLA model and VF in a disordered medium. We 
consider systems with disordered morphology, i.e. disordered topology (connectedness) 
and geometry (sizes of the pores), and argue that in such porous media the DLA model 
and VF may not be equivalent. 

Before presenting our analysis, we should develop a criterion for the equivalence 
of VF and the DLA model. Suppose that after a long time t ,  NvF pores of the medium 
have been filled by DF and large VF have been formed. In the absence of surface 
tension and for M > 1, these VF have a fractal structure and, therefore, we can write 

N V F = a , R d v ~  (3) 

where dVF is the fractal dimension of VF and R is the radius of gyration. If we grow 
these VF by the DLA algorithm, after a time t ,  N D L A  pores of the medium would be 
filled by the displacing fluid, and we can write 

N D L A  = a,RdDLA. (4) 

We now say that VF and the DLA model are equivalent if N D L A  = NvF. This means 
that the sweep efficiencies of the two processes, i.e. the volume fraction of the pores 
filled with the DF, is the same for both processes. For this to be true, we should have 
a ,  = a,  and dvF= d D L A ;  otherwise the two processes are not equivalent and the DLA 
model cannot be used for quantitative modelling of VF in a porous medium. As we 
argue below, one or both of these conditions are often not satisfied. 

We first consider the effect of random topology on DLA and VF. To this end we 
consider a percolating system and restrict our attention to a two-dimensional medium 
represented by, e.g., a square lattice in which only a fraction p of sites are present and 
the bonds between them have a finite conductance. In three dimensions gravity can 
significantly alter the behaviour of the displacement process, but if gravity is neglected, 
our analysis applies equally to 3~ systems. For length scales L larger than the correlation 
length 5, of percolation, the system is homogeneous. However, if L < t,, the largest 
cluster (LC) has a fractal character with a fractal dimension d ,  =91/48 2: 1.896. At the 
percolation threshold p c ,  the LC is a fractal object at all length scales. Thus we first 
discuss the situation at p c .  

To study the DLA model on the LC at p c ,  one occupies a site at the centre of the 
cluster and releases the random walkers on the boundaries of the cluster and restrict 
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their walks to the sites of the cluster, until they join the growing aggregate. Obviously, 
the aggregate can grow only on the backbone of the cluster, i.e. its multiply connected 
part, as the dead-end part of the cluster is screened by the growing aggregate. The 
DLA model on the LC at p c  was first studied by Sahimi and Jerauld (1983), who proposed 
the model as a way of probing the structure of percolation clusters and their effect on 
the growth of the aggregates. Meakin (1984) simulated the DLA model on the LC at 
p c  and estimated that d D L A =  1.4 in two dimensions, as compared to a value of about 
1.7 for DLA on uniform lattices. However, in Meakin’s simulations, random walkers 
were placed at randomly chosen sites of the cluster (instead of the boundary sites) 
and, therefore, Meakin’s model does not have an obvious relation to what we are 
discussing here. We expect the true value of to be even smaller than Meakin’s 
estimate, for reasons discussed below. 

To obtain an accurate estimate of d D L A  we develop a Flory-like approximation 
which has been highly successful (Hentschel 1984) in estimating the fractal dimension 
D of DLA on uniform systems. As usual, we write the ‘free energy’ F of the system 
as the sum of an elastic energy and a repulsive energy. To find the contribution of 
each, we first note that diffusion on the LC at p c  is anomalous (Gefen et a1 1983), so 
that after n steps the random walker travels a distance r - no/ ,  where a = (d,)-’ and 
d ,  is the fractal dimension of the walk, which is about d ,  = 2.87 in two dimensions. 
The elastic energy of the system is proportional to R 2 ( D - 1 ) / n m ,  and the repulsive energy 
is proportional to n2/Rdp.  Therefore, the free energy of the system is given by 

If we minimise F with respect to R and note that R - n’, where p = ( d D L A ) - ’ ,  we obtain 

d D L A  = ( 2 0  + dp -2) / (2  + 2 a ) .  (6) 

Therefore, with D = 1.7, d ,  = 91/48 = 1.896 and a 2 0.3479, we obtain 

which is much smaller than D. Based on the success of the Flory theory for DLA on 
uniform lattices, we expect this value to be an accurate estimate of the true value of 
d D L A  and simulations (Siddiqui and Sahimi 1986) also support (7); d D L A  is estimated 
to be about 1.22 (with a2= 1.7). This low value of d D L A  is caused by the fact that for 
random walks on the LC at p c  the fractal dimensionality d ,  is large and the diffusion 
process is slow. Therefore, the diffusing particles cannot penetrate the aggregate very 
efficiently. Moreover, the LC at p c  is made of nodes, blobs (of multiply connected 
bonds) and links that connect the blobs to one another. If a site at the entrance to a 
blob is occupied by an incoming particle, the blob will be screened and the random 
walkers can no longer enter the blob. We remark that a different mean-field approxima- 
tion for dDLA has been developed by Honda et a1 (1986), and is given by 

d D L A  = ( d i +  d,- I ) / ( d , +  d ,  - 1) (8) 
which predicts that dDLA ( d  = 2) = 1.45. The derivation of (8) is not based on the 
standard arguments that are used to derive an equation such as (6 ) .  Honda et a1 (1986) 
derive (8) by considering the flux of incoming particles and that portion of it that 
would be captured at a distance r from the centre of the aggregate. In addition, they 
make certain assumptions about the scaling of a screening length (or the linear 
dimension of the void space in the aggregate) with r. 
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We now consider VF on the LC at p c .  The standard procedure (King and Scher 
1985, DeGregoria 1985, Sherwood and Nittmann 1986) has been to inject the displacing 
fluid into the origin of a large system. One solves (2) with the boundary conditions 
mentioned above and obtains the pressure field, based on which the interface advances 
into one of the adjacent pores (bonds) with a probability proportional to the flux in 
the bond. The pressure field is then recalculated and the procedure is repeated until 
a large cluster is formed. In uniform media, this is exactly equivalent to the DLA model 
and to the dielectric breakdown model of Niemeyer er a1 (1984). But even if the system 
is perfectly ordered, the random choice of the invaded pore introduces noise and 
fluctuations into the process and fractal VF are formed. However, the fact that even 
a pore with extremely small flux might be invaded by the DF means that an extremely 
high degree of noise dominates the system, which is in fact absent in an ordered 
medium. This model is also incorrect in the microscopic sense. That is, the pressure 
field is determined assuming the entire interface is instantaneously moving, yet only 
one pore is filled with the DF at a time. In reality, if several pores adjacent to the 
interface have similar velocities, they will be filled by the same amount, but the interface 
will also advance into the other pores with smaller velocities and fill a portion of them. 
Thus, on a uniform square grid only dendritic patterns are observed (Chen and 
Wilkinson 1985) which are not similar to DLA in the same systems. To circumvent this 
difficulty, one may adopt a method similar to that of Tang (1985) or Kerttsz and Vicsek 
(1986): the perimeter sites do not become part of the aggregate if they are hit only 
once by the incoming particles. One counts the number n, of random walkers hitting 
site i of the perimeter. If n, reaches a preassigned value m, i becomes part of the 
aggregate. In the method of Tang (1985), once i becomes part of the aggregate, n, is 
nof set to be zero for all other sites j of the perimeter, whereas in the method of Kerttsz 
and Vicsek (1986) one sets n, = 0, once i is part of the aggregate. From a microscopic 
point of view the latter method is more appropriate, since setting n, = 0 and recalculating 
them as new walkers come in correspond to recalculating a new pressure field once a 
pore has been filled with the DF. However, we have found (Siddiqui and Sahimi 1986) 
that the long-time behaviour of both models is the same: as m increases, the growing 
aggregate becomes more regular and approaches the pattern obtained by Chen and 
Wilkinson (1985). 

We carried out simulations of V F  on the LC at p c .  Most of our calculations were 
performed for 81 x 81 and 101 x 101 samples and the results were averaged over 10 
different realisations. The pore radii were distributed uniformly in the interval ( 1  - 
A, 1 +A), with A being an adjustable parameter, which is used to change the broadness 
of the pore size distribution (PSD). We first solve for the pressure field. Then, in a 
time At, an interface in the pore i will move a distance, 1, = (Qi/.rrrf)At, where Q, is 
the flow rate in the pore and r, is its radius. Ar is chosen to be the time that it takes 
for exactly one interface to reach a node. We thus move all the interfaces according 
to this rule and recalculate the pressure field, and so on (see Chen and Wilkinson 
1985). Figure 1 represents our results for A =f, from which we obtain 

d V F 2  1.54*0.10 

a, 22.17  (9) 

which do not agree with the DLA results, which means that the two systems are not 
equivalent. Similar results were obtained for other values of A. We found that, for 
smaller values of A, dVF decreases which means that VF may be sensitive to the broadness 
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Figure 1. The log-log plot of NvF against the radius R. The simulations were done at the 
percolation threshold and the pore radii were distributed uniformly in the interval ( 1  - A ,  
l + A ) ;  here A = f .  

of the PSD. However, within our error estimates various values of dvF appeared to be 
consistent with one another, the details of which will be given elsewhere (Siddiqui 
and Sahimi 1986). The reason for the difference between d D L A  and dvF may be due 
to the fact that VF fill the LC more efficiently than the DLA, because at each step several 
pores are invaded, whereas according to the DLA algorithm only one pore is invaded. 
Note that (8), within the error estimates, is very close to the fractal dimension d B B  of 
the backbone of LC at p c ,  d g B z  1.6 (Sahimi 1984, Herrmann et a1 1984). 

What happens above pc? Slightly above p c  the correlation length tP is very large, 
and if the root-mean-squared displacement ( RMSD) of the diffusing particles is less 
than tp, one is still in the regime of anomalous diffusion. Therefore, unless 1 > p >> p c  
(where tP is small), one would still have many random walkers whose RMSD are less 
than tP, so that the overall effective fractal dimensionality of all random walks may 
be between 2 and d ,  2.87. Thus even for length scales L > tp, one may have d D L ,  < 1.7, 
and the crossover from a regime characterised by ( 7 )  to a uniform system may not be 
sharp, but a slow one. In contrast, for VF and for L> tP the system is homogeneous 
and there is a sharp crossover from that characterised by (8) to that of a uniform system. 

Next, we consider the effect of geometrical disorder (i.e. the sizes of the pores) on 
VF and DLA, and pose the following question which is quite general. Are VF and DLA 

exactly equivalent (in the sense defined above) in a disordered porous medium (with 
or without percolation effects) characterised by a PSD? Most porous media are charac- 
terised by a PSD f(r) (Collins 1961) which can be measured by, e.g., the automated 
serial sectioning technique. A heterogeneous porous medium is characterised by a 
distribution of permeabilities, which can drastically change the behaviour of the 
displacement process. It is not clear at all that the DLA model is equivalent to V F  in 
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such media. In the percolation system discussed above, we evidently used a PSD of 
the following form: 

f ( r )  = ( 1  - p ) S ( r ) + p h ( r )  (10) 

and our analysis suggested that DLA and VF are not equivalent for certain values of p 
and length scales L. This means that there are certain classes o f f (  r )  for which DLA 

and VF are qualitatively different. Therefore, a more relevant question is the following: 
for what class off( r )  are DLA and VF equivalent (in the sense defined above)? If there 
is such a class o f f (  r ) ,  one would also like to know whether it depends on the value 

We recall that, according to the DLA algorithm, the probability that any one pore 
is invaded by the displacing fluid is proportional to the flux of fluid in the pore. 
However, an actual displacement process in a geometrically disordered porous medium 
does not proceed stochastically (see above) and, even if it does, it is not clear that the 
interface would invade a pore with such a probability. However, our goal here is not 
to propose a stochastic or deterministic growth law for displacement processes in a 
porous medium, but to devise a method based on which one can distinguish between 
a DLA-like growth and an actual displacement process in a disordered porous medium. 

Suppose that at any given time there are N pores available for the invasion of the 
displacing fluid. According to the DLA model the probability qDLA that a pore i is 
invaded by the displacing fluid is given by 

of p .  

q D L A  = Ui/A ( 1 1 )  

where A = XE, V,. Thus, this growth law does not directly use any information about 
the local microstructure of the medium. It also fills only one pore at a time. In an 
actual displacement, if two pores adjacent to the interface have similar velocities, then 
the interface will move comparable distances in both of them in any given time interval 
A?, it does not select anyone of them randomly. To make further progress, we attribute 
all the randomness of the medium to r, the effective radius of a pore. That is, given 
a porous medium with a P S D ~ (  r ) ,  we can deterministically calculate all other quantities 
of interest. A pore i with the largest velocity among the N available pores will be the 
first to be filled by the DF in time A?, i.e. if Q , / s ,  is maximum, where s, = mf.  During 
this time, the DF will also invade the remaining pores adjacent to the interface and fill 
a portion of each. If we assume that these portions are small compared to the completely 
filled pore, then we can derive a relation for q V F ,  the probability that a pore i is invaded 
during the displacement process. Under this assumption, a simple probabilistic argu- 
ment yields 

where S is the probability density function of s and a = s j Q j / Q i .  Thus if the growth 
laws ( 1  1 )  and (12) are to be the same, i.e. if a DLA-like simulation is to yield exactly 
the same predictions as in an actual displacement, there has to be a probability density 
S (which can be easily obtained fromf( r ) )  which would reduce (12) to ( 1  1). However, 
it is easy to see that for PSD such as ( lo ) ,  equation (12) cannot be reduced to ( l l ) ,  
unless h ( r )  = s ( r - r O )  and p =  1 ,  which explains to some extent our results with the 
percolating media discussed above. Of course, equation (12) is only an approximation, 
since we neglected the fact that the DF invades several pores and took into account 
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only that pore which is first filled by the DF. On the other hand, this approximation 
strongly indicates that the DLA model and V F  are not equivalent in a disordered porous 
medium, because if the two models are not identical even when only one pore (with 
the largest velocity) is invaded at each step of the displacement process (which the 
above analysis indicates), we expect them to be quite different for the more general 
case of invading several pores. We have carried out simulations with many other PSD 

f( r ) ,  and in all cases the predictions of the DLA models do not agree with those of VF. 

The results, together with further development of equation (12) when all the invaded 
pores are taken into account, will be given elsewhere (Siddiqui and Sahimi 1986). We 
may conclude that, for a general type of geometrical disorder, the DLA model may not 
be exactly equivalent to VF. Therefore, the exact analogy that has been asserted to 
exist between the DLA model and VF (see, e.g., Paterson 1984, Kadanoff 1985) does 
not hold for disordered porous media. As a result, for a wide class of disordered 
porous media, the DLA model cannot be used to predict quantitatively the properties 
of interest in a displacement process, such as the sweep efficiency. Moreover, the 
problem of developing a random walk solution to the VF problem in a disordered 
porous medium remains unsolved. 

After the submission of this letter, and during the STATPHYS 16 conference in 
Boston, we became aware of two papers on the problem studied here. Murat and 
Aharony (1986) have simulated the DLA model and VF on percolating networks, in 
which all open pores have the same radius. Their estimate of d,,,  is consistent with 
ours, but they find that dvF= d D L A .  However, there are two differences between their 
simulations of VF and those discussed here. As a boundary condition, Murat and 
Aharony (1986) assume that the pressure gradient is zero on the boundary of the LC 

(we specify pressure on the boundary of the LC). More significantly, Murat and Aharony 
(1986) use the dielectric breakdown model to simulate VF which, as discussed above, 
may not be totally appropriate for simulating VF. They distinguish between the DLA 

model and VF by noting that the ratio a , / a ,  deviates from unity. We cannot rule out 
the possibility that, with larger networks, our results will become consistent with theirs, 
although we have some indications that this will not be the case. Chan et a1 (1986) 
consider a model of porous media with narrow and equal tubes which are connected 
to one another at chambers with random volumes very much larger than the volumes 
of narrow tubes. They argue that the DLA model and VF are not equivalent in such a 
medium, unless the distribution of the volumes of the chambers has a particular form. 
They derive an equation somewhat similar to equation (12), which is exact for their 
model. 

We would like to thank A Aharony, B D Hughes and M Murat for explaining their 
work to us and for useful discussions, and H J Herrmann and D Stauffer for very 
stimulating discussions and helpful comments on the manuscript. This work was 
supported in part by a fellowship from Chevron Oil Field Research Company. 

Nore added in proof: More recently, we have simulated vF and D L A  in 151 x 151 lattices at and above pc  
with distributed pore radii. We have found lower values of d,, than that given by (9). However, the value 
of d,,, appears to be in complete agreement with the prediction of the FIory theory, equations ( 6 )  and 
(7),  and our simulations with smaller lattices. This further indicates that, in disordered porous media, VF 

and DLA belong to different universality classes. We have also carried out simulations with pore conductance 
distributions that are very broad. The results indicate that dVF and d,,, are very sensitive to the details of 
the distribution. More details are given in Siddiqui and Sahimi (1986). 
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